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A detailed study is made of Binomial Rings, rings with Binomial Co-eHcients, as
introduced by Hall. They are axiomatised and proved identical to the Numerical
Rings studied by Ekedahl. A Binomial Transfer Principle is established, enabling com-
binatorial proofs of algebraical identities. The finitely generated binomial rings are
completely classified, and like-wise the finitely generated, torsion-free modules.
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The ubiquity and utility of Binomial Co-eHcients hardly require a detailed
explanation. Their abstract study seems to have been initiated by Hall, [5],
who introduced the concept of Binomial Rings in connexion with his ground-
breaking work on nilpotent groups. The definition is simple: a Binomial Ring
is a commutative, unital ring R which is torsion-free and closed in QbR under
the “formation of binomial co-eHcients”:

r ÞÑ
rpr ´ 1q ¨ ¨ ¨ pr ´ n` 1q

n!
.

Ekedahl, [2], preferring the axiomatic approach, proposed six axioms in-
tended to capture the properties of Binomial Co-eHcients. He appears not
to have been familiar with the work of Hall and never proved the two modi
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operandi to be equivalent. Rectifying this is one object of the present paper.
Indeed, we not only justify, but improve upon Ekedahl’s axioms, giving expli-
cit formulæ (where none were given), as well as dropping the ghastliest axiom
(the sixth):

Theorem 3. The following five axioms characterise the class of Binomial Rings:

I.
ˆ

a` b
n

˙

“
ÿ

p`q“n

ˆ

a
p

˙ˆ

b
q

˙

.

II.
ˆ

ab
n

˙

“

n
ÿ

m“0

ˆ

a
m

˙

ÿ

q1`¨¨¨`qm“n
qiě1

ˆ

b
q1

˙

¨ ¨ ¨

ˆ

b
qm

˙

.

III.
ˆ

a
m

˙ˆ

a
n

˙

“

n
ÿ

k“0

ˆ

a
m` k

˙ˆ

m` k
n

˙ˆ

n
k

˙

.

IV.
ˆ

1
n

˙

“ 0 when n ě 2.

V.
ˆ

a
0

˙

“ 1 and
ˆ

a
1

˙

“ a.

The missing sixth axiom will be duly commented upon.
What is known on Binomial Rings stems principally from rather a re-

cent paper [3] by Elliott, which in particular aims to elucidate the connexion
between binomial rings and λ-rings. Let us compile a list of their most im-
portant properties.

1. The Free Binomial Ring on the set X is the ring

tf P QrXs | f pZXq Ď Zu.

of integer-valued polynomials on X. ([3], Proposition 2.1.)

2. The following conditions on a commutative, unital ring R are equivalent
([3], Theorem 4.1, 4.2):

A. R is the quotient of a binomial ring.
B. The elements of R satisfy every integer polynomial congruence univer-

sally true for the integers.
C. apa´ 1q ¨ ¨ ¨ pa´ n` 1q is divisible by n! for every n P N.
D. Fermat’s Little Theorem holds: ap ” a mod pR for every prime p.
E. The Frobenius map a ÞÑ ap is the identity for every prime p.
F. R{pR is reduced for every prime p, and the residue field of R{pR is

isomorphic to Z{p.
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These transform into criteria for binomial rings if, in each case, an as-
sumption on lack of torsion be added.

3. The binomial property is preserved under the following constructions:
localisation, direct and tensor products, filtered inductive and projective
limits. ([3], Propositions 5.1, 5.4, 5.5.)

4. The inclusion functor from Binomial Rings to Rings has both a left and
a right adjoint. ([3], Theorems 7.1, 9.1.)

5. Binomial rings are equivalent to λ-rings with trivial Adams operations.
([7] Proposition 1.2, [3] Proposition 8.3.)

6. The Binomial Theorem: Let R be binomial and let A be a commutative al-
gebra over R which is complete with respect to the ideal I . The equation

p1` xqr “
8
ÿ

n“0

ˆ

r
n

˙

xn

defines an R-module structure on the abelian group p1 ` I , ¨q. ([3], Pro-
position 11.1.)

As a contribution to the theory, we prove the following Transfer Principle,
formally sanctioning combinatorial proofs of algebraical identities in bino-
mial rings. It may be favourably compared to property 2B above.

Theorem 6: The Binomial Transfer Principle. A binomial polynomial iden-
tity universally valid in Z is valid in every binomial ring.

We also prove the following Classification Theorem.

Theorem 10: The Structure Theorem for Finitely Generated Binomial Rings.

Let R be a finitely generated binomial ring. There exist unique positive, simply com-
posite integers m1, . . . , mk such that

R – Zrm´1
1 s ˆ ¨ ¨ ¨ ˆ Zrm´1

k s.

Binomial rings naturally manifest themselves in the theories of integer-
valued polynomials, Witt vectors, and λ-rings; to name but a few. We refer the
reader to Elliott’s article [3] and the lucid monograph [11] by Yau, where these
topics have been expounded upon.

More recently, binomial rings have turned out to form the natural frame-
work for discussing polynomial maps and functors of modules; see [8], [9],
and [10].

§1. Definitions and Examples

Let us first state Hall’s original definition, as found in [5].
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Definition 1 ([5], Section 6). Let R be a commutative ring with unity. It is
a binomial ring if it is torsion-free1 and closed in Qb R under the operations

r ÞÑ
rpr ´ 1q ¨ ¨ ¨ pr ´ n` 1q

n!
.

We next present, with minor modifications, Ekedahl’s axioms for numer-
ical rings, with the notable exception of the sixth. The original axioms in [2]
were rather non-explicit, stated, as they were, in terms of the same three mys-
terious polynomials occurring in the theory of λ-rings. Our definition intends
to remedy this.

Definition 2 ([2], Definition 4.1). A numerical ring is a commutative ring
with unity equipped with unary operations

r ÞÑ
ˆ

r
n

˙

, n P N;

called binomial co-efficients and subject to the following axioms:

I.
ˆ

a` b
n

˙

“
ÿ

p`q“n

ˆ

a
p

˙ˆ

b
q

˙

.

II.
ˆ

ab
n

˙

“

n
ÿ

m“0

ˆ

a
m

˙

ÿ

q1`¨¨¨`qm“n
qiě1

ˆ

b
q1

˙

¨ ¨ ¨

ˆ

b
qm

˙

.

III.
ˆ

a
m

˙ˆ

a
n

˙

“

n
ÿ

k“0

ˆ

a
m` k

˙ˆ

m` k
n

˙ˆ

n
k

˙

.

IV.
ˆ

1
n

˙

“ 0 when n ě 2.

V.
ˆ

a
0

˙

“ 1 and
ˆ

a
1

˙

“ a.

Conspicuously absent is a formula for reducing a composition
`

p a
mq
n

˘

of bi-
nomial co-eHcients to simple ones, included as Ekedahl’s sixth axiom. Sur-
prisingly, such a formula will turn out to be a consequence of the five axioms
listed.

It follows easily from Axioms I, IV, and V that, when the functions
`

´

n

˘

are evaluated on multiples of unity, we retrieve the ordinary binomial co-
eHcients, namely

ˆ

m ¨ 1
n

˙

“
mpm´ 1q ¨ ¨ ¨ pm´ n` 1q

n!
¨ 1, m P N.

1The word torsion will, here and elsewhere, be taken to mean Z-torsion.
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Since
`n¨1

n

˘

“ 1, but
`0

n

˘

“ 0 unless n “ 0, a numerical ring has necessarily
characteristic 0.

Our present objective will be shewing that numerical and binomial rings
co-incide. It follows that the numerical structure on a given ring is always
unique.

Example 1. In any Q-algebra, binomial co-eHcients may be defined by the
usual formula:

ˆ

r
n

˙

“
rpr ´ 1q ¨ ¨ ¨ pr ´ n` 1q

n!
.

4

Example 2. For any integer m, the ring Zrm´1s is numerical. Since it in-
herits the binomial co-eHcients from Q, it is simply a question of verifying
closure under the formation of binomial co-eHcients. Because

ˆ a
f
n

˙

“

a
f p

a
f ´ 1q ¨ ¨ ¨ p a

f ´ pn´ 1qq

n!
“

apa´ f q ¨ ¨ ¨ pa´ pn´ 1qf q
n!f n ,

it will suHce to prove that whenever pi | n!, but p - b, then

pi | pa` bqpa` 2bq ¨ ¨ ¨ pa` nbq.

To this end, let

n “ cmpm ` ¨ ¨ ¨ ` c1p` c0, 0 ď ci ď p´ 1,

be the base p representation of n. For fixed k and 0 ď d ă ck, the numbers

a` pcmpm ` ¨ ¨ ¨ ` ck`1p
k`1 ` dpk ` iqb, 1 ď i ď pk, (1)

will form a set of representatives for the congruence classes modulo pk, as will
of course the numbers

cmpm ` ¨ ¨ ¨ ` ck`1p
k`1 ` dpk ` i, 1 ď i ď pk. (2)

Note that if x ” y mod pk and j ď k, then pj | x iv pj | y. Hence there are at
least as many factors p among the numbers (1) as among the numbers (2). The
claim now follows. 4

Example 3. As the special case m “ 1 of the preceding example, Z itself
is numerical. For this ring there is another, more direct, way of proving the
numerical axioms. Let us indicate how they may be arrived at as solutions to
problems of Enumerative Combinatorics.

Axiom I. We have two types of balls: round balls, square2 balls. If
we have a round balls and b square balls, in how many ways may

2This is in honour of Dr Lars-Christer Böiers of Lund, an eminent teacher, who gave an ex-
ample featuring round balls and square balls during his course in Discrete Mathematics.
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we choose n balls? Let p be the number of round balls chosen, and
q the number of square balls.
Axiom II. We have a chocolate box containing a rectangular aˆ b
array of pralines, and we wish to eat n of these. In how many ways
can this be done? Suppose the pralines we choose to feast upon
are located in m of the a rows, and let qi be the number of chosen
pralines in row number i of these m.
Axiom III. There are a Mathematicians, of which m do Geometry
and n Algebra. Naturally, there may exist people who do both or
neither. How many distributions of skills are possible? Let k be the
number of Mathematicians who do only Algebra.
Axiom IV. We are the owner of a single dog. In how many ways
can we choose n of our dogs to take for a walk?
Axiom V. Snuvy the dog has a blankets. In how many ways may
he choose 0 (in the summer) or 1 (in the winter) of his blankets to
keep him warm in bed?

4

Example 4. Being given by rational polynomials, the operations r ÞÑ
`r

n

˘

give continuous maps Qp Ñ Qp in the p-adic topology. It should be well
known that Z is dense in the ring Zp, and that Zp is closed in Qp. Since the
binomial co-eHcients leave Z invariant, the same must be true of Zp, which is
thus numerical.

This provides an alternative proof of the fact that Zrm´1s is closed under
binomial co-eHcients. For this is evidently true of the localisations

Zppq “ QX Zp,

and therefore also for
Zrm´1s “

č

p-m
Zppq.

4

§2. Elementary Identities

Theorem 1. The following formulæ are valid in any numerical ring:

1.
ˆ

r
n

˙

“
rpr ´ 1q ¨ ¨ ¨ pr ´ n` 1q

n!
when r P Z.

2. n!
ˆ

r
n

˙

“ rpr ´ 1q ¨ ¨ ¨ pr ´ n` 1q.

3. n
ˆ

r
n

˙

“ pr ´ n` 1q
ˆ

r
n´ 1

˙

.
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Proof. The map

ϕ : pR,`q Ñ p1` tRrrtss, ¨q, r ÞÑ
8
ÿ

n“0

ˆ

r
n

˙

tn

is, by Axioms I and V, a group homomorphism. Therefore, when r P Z,

ϕprq “ ϕp1qr “ p1` tqr,

which expands as usual (with ordinary binomial co-eHcients) by the Binomial
Theorem. This proves Equation 1. (An inductive proof will also work.)

To prove Equations 2 and 3, we proceed diverently. By Axiom III,

r
ˆ

r
n´ 1

˙

“

ˆ

r
n´ 1

˙ˆ

r
1

˙

“

1
ÿ

k“0

ˆ

r
n´ 1` k

˙ˆ

n´ 1` k
1

˙ˆ

1
k

˙

“

ˆ

r
n´ 1

˙ˆ

n´ 1
1

˙ˆ

1
0

˙

`

ˆ

r
n

˙ˆ

n
1

˙ˆ

1
1

˙

“ pn´ 1q
ˆ

r
n´ 1

˙

` n
ˆ

r
n

˙

,

which reduces to Equation 3.
Equation 2 will then follow inductively from Equation 3.

§3. Numerical versus Binomial Rings

The crucial step towards shewing the equivalence of binomial and numerical
rings is demonstrating the lack of torsion in the latter class.

Lemma 1. Let m be an integer. If p is prime and pl | m, but p - k, then pl |
`m

k

˘

.

Proof. pl divides the right-hand side of

k
ˆ

m
k

˙

“ m
ˆ

m´ 1
k´ 1

˙

,

and therefore also the left-hand side. But pl is relatively prime to k, so in fact
pl |

`m
k

˘

.

Lemma 2. Let m1, . . . , mk be natural numbers, and put

m “ m1 ` ¨ ¨ ¨ `mk.

If
n “ m1 ` 2m2 ` 3m3 ` ¨ ¨ ¨ ` kmk

is prime, then

m |

ˆ

m
tmiu

˙

,

unless m1 “ m “ n, and all other mi “ 0.
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Proof. Let a prime power pl | m. Because of the relation n “
ř

mii, then, save
for the exceptional case

m1 “ m “ p “ n

given above, not all mi can be divisible by p. Say p - mj; then
ˆ

m
tmiui

˙

“

ˆ

m
mj

˙ˆ

m´mj

tmiui‰j

˙

is divisible by pl according to Lemma 1. The claim follows.

Lemma 3. Consider a numerical ring R. Let r P R and m, n P N. If nr “ 0, then
also mn

` r
m

˘

“ 0.

Proof. Follows inductively, since if nr “ 0, then

mn
ˆ

r
m

˙

“ npr ´m` 1q
ˆ

r
m´ 1

˙

“ ´npm´ 1q
ˆ

r
m´ 1

˙

.

Theorem 2. Numerical rings are torsion-free.

Proof. Suppose nr “ 0 in R, and, without any loss of generality, that n is prime.
We calculate using the numerical axioms:

0 “
ˆ

0
n

˙

“

ˆ

nr
n

˙

“

n
ÿ

m“0

ˆ

r
m

˙

ÿ

q1`¨¨¨`qm“n
qiě1

ˆ

n
q1

˙

¨ ¨ ¨

ˆ

n
qm

˙

“

n
ÿ

m“0

ˆ

r
m

˙

ÿ

ř

mi“m
ř

mii“n

ˆ

m
tmiu

˙

ź

i

ˆ

n
i

˙mi

.

For given numbers qi, we have let mi denote the number of these that are equal
to i (of course i ě 1 and mi ě 0). Conversely, when the numbers mi are given,
values may be distributed to the numbers qi in

` m
tmiu

˘

ways, which accounts for
the multinomial co-eHcient above.

We claim the inner sum is divisible by mn when m ě 2. Indeed, when
2 ď m ď n ´ 1, then m |

` m
tmiu

˘

by Lemma 2. Also, there must exist some
0 ă j ă n such that mj ą 0, and for this j, Lemma 1 asserts n |

`n
j

˘mj . In the
case m “ n, obviously all mi “ 0 for i ě 2, and m1 “ n, and the inner sum will
equal

`n
1
˘n, which is divisible by n2 “ mn.

We can now employ Lemma 3 to kill all terms except m “ 1. But this term
is simply

`r
1
˘

“ r, which is then equal to 0.

Theorem 3. Numerical and Binomial Rings co-incide.
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Proof. Clearly, binomial rings satisfy the numerical axioms.
Conversely, numerical rings are torsion-free, and their binomial co-eH-

cients fulfil
n!
ˆ

r
n

˙

“ rpr ´ 1q ¨ ¨ ¨ pr ´ n` 1q

by Theorem 1, and hence
ˆ

r
n

˙

“
rpr ´ 1q ¨ ¨ ¨ pr ´ n` 1q

n!
.

The appellations numerical and binomial may thus be treated synonymously.
Let us now resolve the mystery of the missing sixth axiom. In Z, there

“exists” a formula for iterated binomial co-eHcients:
ˆ

` r
m

˘

n

˙

“

mn
ÿ

k“1

gk

ˆ

r
k

˙

, (3)

in the sense that there are unique integers gk making the formula valid for
every r P Z. Golomb has examined these iterates in some detail, and his paper
[4] is brought to an end with the discouraging conclusion:

No simple reduction formulas have yet been found for the most general
case of

`

p
n
bq
a
˘

.

Note, however, that (3) is a polynomial identity with rational co-eHcients,
by which it must hold in every Q-algebra, and therefore in every binomial
ring. This proves the redundancy of Ekedahl’s original sixth axiom:

Theorem 4. The formula
ˆ

` r
m

˘

n

˙

“

mn
ÿ

k“1

gk

ˆ

r
k

˙

for iterated binomial co-efficients is valid in every binomial ring.

§4. Binomial Transfer

Let X be a set, and let EpXq be the term algebra3 based on X. It consists of all
finite words that can be formed from the alphabet

X Y
"

`,´, ¨, 0, 1,
ˆ

´

n

˙
ˇ

ˇ

ˇ

ˇ

n P N
*

,

where the symbols ` and ¨ are binary, ´ and
`

´

n

˘

are unary, and 0 and 1 nullary
(constants).

3The denomination term algebra is borrowed from Universal Algebra; confer Definition II.10.4
of [1].
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Definition 3. The ring Z
`X
´

˘

is the result of imposing upon the term algebra
the axioms of a commutative ring with unity, as well as the Numerical Axioms.

Theorem 5. There is an isomorphism

Z
ˆ

X
´

˙

– tf P QrXs | f pZXq Ď Zu,

which is thus the free binomial ring on the set X. (Confer property 1 in the introductory
section.)

Proof. The Numerical Axioms, together with the formula for iterated bino-
mial co-eHcients, will reduce any element of Z

`X
´

˘

to a binomial polynomial.
Conversely, it is well known that any integer-valued polynomial is given by a
binomial polynomial.

Theorem 6: The Binomial Transfer Principle. A binomial polynomial iden-
tity universally valid in Z is valid in every binomial ring.

Proof. Suppose ppx1, . . . , xkq “ 0 is valid for any integer values of x1, . . . , xk. By
the previous theorem, there is a canonical embedding

Z
ˆ

x1, . . . , xk

´

˙

Ñ ZZk

ppx1, . . . , xkq ÞÑ pppn1, . . . , nkqqpn1,...,nkqPZk .

View p as an element of Z
`x1,...,xk

´

˘

. It is the zero binomial map, and therefore
also the zero binomial polynomial.

§5. Binomial Ideals and Factor Rings

Let us now make a short survey of binomial ideals and the associated factor
rings.

Theorem 7. Let I be an ideal of the binomial ring R. The equation
ˆ

r ` I
n

˙

“

ˆ

r
n

˙

` I

will yield a binomial structure on R{I if and only if
ˆ

e
n

˙

P I

for every e P I and n ą 0.

10
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Proof. The condition is clearly necessary. To shew suHciency, note that, when
r P R, e P I , and the condition is satisfied, then

ˆ

r ` e
n

˙

“
ÿ

p`q“n

ˆ

r
p

˙ˆ

e
q

˙

”

ˆ

r
n

˙ˆ

e
0

˙

“

ˆ

r
n

˙

mod I .

The Numerical Axioms in R{I follow immediately from those in R.

Definition 4. An ideal of a binomial ring satisfying the condition of the
previous theorem will be called a binomial ideal.

Example 5. Z does not possess any non-trivial binomial ideals, because all
its non-trivial factor rings have torsion. Neither do the rings Zrm´1s. 4

The next theorem provides a kind of converse.

Theorem 8. Let R be a (commutative, unital) ring, and let I be an ideal. Suppose I
is a vector space over Q, and that R{I is binomial. Then R itself is binomial, and I is a
binomial ideal.

Proof. Since I and R{I are both torsion-free, so is R, and there is a commutative
diagram with exact rows:

0 // I // R

��

// R{I

��

// 0

0 // QbZ I // QbZ R // QbZ R{I // 0

It will suHce to shew that R is closed under the formation of binomial co-
eHcients in Qb R. Let r P R. Calculating in in the ring Qb R{I yields

rpr ´ 1q ¨ ¨ ¨ pr ´ n` 1q
n!

` I “
ˆ

r ` I
n

˙

.

Since
`r`I

n

˘

in fact lies in R{I , it must be that

rpr ´ 1q ¨ ¨ ¨ pr ´ n` 1q
n!

P R,

and we are finished.
That I is binomial follows from the fact that it is a vector space over Q.

§6. Finitely Generated Binomial Rings

Lemma 4. If a ring R is torsion-free and finitely generated as an abelian group, its
fraction ring is Qb R.

11
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Proof. By the Structure Theorem for Finitely Generated Abelian Groups, R is
isomorphic to some Zn as an abelian group. Let a P Zn. Multiplication by
a is a linear transformation on Zn, and so may be represented by an integer
matrix A. The condition that a not be a zero-divisor corresponds to A being
non-singular. It will then have an inverse A´1 with rational entries. The inverse
of a is given by

a´1 “ A´11 P Qn “ Qb R,

where 1 denotes the multiplicative identity of R, considered as a column vector.

Lemma 5. Let A denote the algebraic integers in the field K Ě Q. If K is finitely
generated over Q, then A is finitely generated over Z.

The subsequent (in)equality of Krull dimensions is supposedly familiar to
scholars in the fields of Commutative Algebra or Algebraic Geometry. We are
grateful to Professor Ekedahl for furnishing the proof.

Theorem 9: Chevalley’s Dimension Argument. Let R be a finitely generated,
non-trivial, commutative, unital ring. The (in)equality

dim R{pR “ dim QbZ R ď dim R´ 1

holds for all but finitely many prime numbers p.
When R is an integral domain of characteristic 0, there is in fact equality for all but

finitely many primes p.

Proof. In the case of positive characteristic n, the inequality will hold trivially,
for then

QbZ R “ 0 “ R{pR,

except when p | n.
Consider now the case when R is an integral domain of characteristic 0.

There is an embedding ϕ : Z Ñ R, and a corresponding dominant morphism

Spec ϕ : Spec R Ñ Spec Z

of integral schemes, which is of finite type. Letting Frac P denote the fraction
field of R{P, we may define

Cn “ tP P Spec Z | dimpSpec ϕq´1pPq “ nu
“ tP P Spec Z | dim Rb Frac P “ nu
“ tppq | dim R{pR “ nu Y tp0q | dim RbQ “ nu.

This latter set, by Chevalley’s Constructibility Theorem4, will contain a dense,
open set in Spec Z if n “ dim R ´ dim Z. Such a set must contain p0q and ppq
for all but finitely many primes p, so for those primes,

dim QbZ R “ dim R{pR “ dim R´ 1.
4This proposition appears to belong to the folklore of Algebraic Geometry. An explicit refer-

ence is Théorème 2.3 of [6].
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Now let R be an arbitrary ring of characteristic 0. For any prime ideal Q,
R{Q will be an integral domain (but not necessarily of characteristic 0), and
so we can apply the preceding to obtain

dim QbZ R{Q “ dim R{pQ` pRq ď dim R{Q´ 1,

for all but finitely many primes p. The prime ideals of QbZ R are of the form
QbZ Q, where Q is a prime ideal in R. Moreover,

pQbZ Rq
L

pQbZ Qq “ QbZ R{Q.

It follows that

dim QbZ R “ max
QPSpec R

dimpQbZ Rq
L

pQbZ Qq

“ max
QPSpec R

dim QbZ R{Q

“ max
QPSpec R

dim R{pQ` pRq

“ max
QPSpec R{pR

pR{pRq
L

Q “ dim R{pR

for all but finitely many p, because the maxima are taken over the finitely
many minimal prime ideals only. In a similar fashion,

dim QbZ R “ max
QPSpec R

dimpQbZ Rq
L

pQbZ Qq

“ max
QPSpec R

dim QbZ R{Q

ď max
QPSpec R

dim R{Q´ 1 ď dim R´ 1.

The following Classification Theorem, together with its proof, was com-
municated to us by Professor Ekedahl.

Theorem 10: The Structure Theorem for Finitely Generated Binomial Rings.

Let R be a finitely generated binomial ring. There exist unique positive, simply com-
posite5 integers m1, . . . , mk such that

R – Zrm´1
1 s ˆ ¨ ¨ ¨ ˆ Zrm´1

k s.

Proof. Case A: R is finitely generated as an abelian group. We impose the stronger
hypothesis that R be finitely generated as an abelian group.

If rn “ 0, then, because of Fermat’s Little Theorem (property 2 in the
introduction), r is divisible by p for all primes p ą n. But in Zn this can only
be if r “ 0; hence R is reduced. By the lemma above, the fraction ring of R

5A simply composite, or square-free, number is a positive integer that is a (possibly empty) product
of distinct primes.
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is Q b R. As this is reduced and artinian, being finite-dimensional over Q, it
splits up into a product of fields of characteristic 0.

Case A1: The fraction ring of R is a field. Let us first consider the special case
when the fraction ring Q b R is a field, whose ring of algebraic integers we
denote by A. We examine the subgroup A X R of A. Since A Ď Q b R, an
arbitrary element of A will have an integer multiple lying in R. This means
A{pAXRq is a torsion group. Also, the fraction ring QbR is finitely generated
over Q, so, from the lemma above, we deduce that A is finitely generated over
Z. Because the factor group A{pA X Rq is both finitely generated and torsion,
it is killed by a single integer N , so that

NpA{pAX Rqq “ 0,

and, as a consequence,
pAX RqrN´1s “ ArN´1s.

Now let z P A and let p be a prime. The element

z P ArN´1s “ pAX RqrN´1s

can be written z “ a
Nk , where a P A X R and k P N. Using Fermat’s Little

Theorem, we find that

pNkqp “ Nk ` pn
ap “ a` pb

for some n P Z and b P R. Observe that pb belongs to AX R, hence to ArN´1s,
so that b P A, as long as p does not divide N . We then have

zp ´ z “
ap

Nkp ´
a

Nk “
a` pb

Nk ` pn
´

a
Nk

“
pa` pbqNk ´ apNk ` pnq

pNk ` pnqNk “ p
Nkb ´ na
pNk ` pnqNk “ p

Nkb ´ na
N pp`1qk ,

and hence
pu “ zp ´ z P A

for some u P ArN´1s, assuming p - N . But then in fact u P A.
Consequently, for all z P A and all suHciently large primes p, the relation

zp ´ z P pA holds, so that zp “ z in A{pA. Being reduced and artinian, A{pA
may be written as a product of fields, and, because of the equation zp “ z,
these fields must all equal Z{p, which means all suHciently large primes split
completely in A. It will then be a consequence of Chebotarev’s Density The-
orem6 that Qb R “ Q. Since we are working under the assumption that R is
finitely generated as an abelian group, we infer that R “ Z.

6(A special case of) Chebotarev’s Density Theorem states the following: The density of the
primes that split completely in a number field K equals 1

|GalpK{Qq|
. In our case, this set has density

1.
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Case A2: The fraction ring of R is a product of fields. If the fraction ring of R
is a product

ś

Kj of fields, the projections Rj of R on the factors Kj will each
be binomial. Hence R Ď

ś

Rj, with each Rj being isomorphic to Z, according
to the above argument. But Z possesses no non-trivial binomial ideals, so by
Goursat’s Lemma, R must equal the whole product

R “
ź

Rj “
ź

Z.

Case B: R is not finitely generated as an abelian group. Finally, we drop the as-
sumption that R be finitely generated as a group, and assume it finitely gen-
erated as a ring only. Because of the relation p | rp ´ r, R{pR will be a finitely
generated torsion group for each prime p. It will then have Krull dimension 0,
and it follows from Chevalley’s Dimension Argument that dim Qb R “ 0, so
that QbR is a finite-dimensional vector space over Q. Only finitely many de-
nominators can be employed in a basis, so there exists an integer M for which
RrM´1s is finitely generated over ZrM´1s.

We can now more or less repeat the previous argument. RrM´1swill still be
reduced, and as before, QbRrM´1swill be finite-dimensional, hence a product
of fields, and we may reduce to the case when QbRrM´1s is a field. Letting A
denote the algebraic integers in QbRrM´1s, the factor group A{RrM´1s will be
finitely generated and torsion, and hence killed by some integer, so that again
we are lead to RrN´1s “ ArN´1s. As before, we may draw the conclusion that
Q b R “ Q, and consequently that R “ ZrN´1s. This concludes the proof of
existence.

Uniqueness. Note that

S “ Zrm´1
1 s ˆ ¨ ¨ ¨ ˆ Zrm´1

k s

is characterised, among rings of this same type, by the following properties:

1. There exist k elements e1, . . . , ek P S such that:

(a) The set te1, . . . , eku is a basis for Qb S.
(b) eiej “ δijei (Kronecker delta).

2. Any such basis may be renumbered te1, . . . , eku so that ej be divisible by
a simply composite nj (in S) if and only if nj | mj.

The first property shews that the number k is uniquely determined, and the
second that diverent values for mi yield non-isomorphic rings.

§7. Torsion-Free Modules

An elegant application of the Structure Theorem is the classification of tor-
sion-free modules.

Lemma 6. Consider a ring homomorphism ϕ : R Ñ S. If R is binomial and S is
torsion-free, then Ker ϕ will be a binomial ideal.

15
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Proof. If r P Ker ϕ and n ą 0, then

n!ϕ
ˆˆ

r
n

˙˙

“ ϕ

ˆ

n!
ˆ

r
n

˙˙

“ ϕprpr ´ 1q ¨ ¨ ¨ pr ´ n` 1qq “ 0.

Thus
`r

n

˘

P Ker ϕ.

Let M be a torsion-free module over the binomial ring R, with module
structure given by the group homomorphism

µ : R Ñ End M.

We have the following commutative diagram:

0

{{
0 // Ker µ // R //

µ

��

R{Ker µ

yy

// 0

End M

The group End M is torsion-free, so, by the lemma, Ker µ is a binomial ideal.
Therefore M will in fact be a module over the binomial ring R{Ker µ.

Let us now also assume that End M is finitely generated (as a module) over
Zrn´1s for some integer n. Because Zrn´1s is a noetherian ring, End M is a
noetherian module. The submodule R{Ker µ is finitely generated over Zrn´1s,
and therefore also finitely generated as a ring. By the Structure Theorem,

R{Ker µ – Zrm´1
1 s ˆ ¨ ¨ ¨ ˆ Zrm´1

k s

for some simply composite, positive integers mj. The module M will split up
as a direct sum

M “ M1 ‘ ¨ ¨ ¨ ‘Mk,

with each Mj a torsion-free module over Zrm´1
j s. Because these rings are prin-

cipal, the modules Mj are in fact free, and we have proved:

Theorem 11. Consider a module M over a binomial ring. Suppose M is torsion-free
and finitely generated over Zrn´1s for some integer n. There exist positive integers mj, rj
such that

M – Zrm´1
1 s

r1 ‘ ¨ ¨ ¨ ‘ Zrm´1
k s

rk

as a module over
Zrm´1

1 s ˆ ¨ ¨ ¨ ˆ Zrm´1
k s.
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